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(Received 25 February 2014; final version received 9 May 2014)

The recently introduced adaptive composite map projection technique changes the
projection to the geographic area shown on a map. It is meant as a replacement for the
commonly used web Mercator projection, which grossly distorts areas when represent-
ing the entire world. The original equal-area version of the adaptive composite map
projection technique uses the Lambert azimuthal projection for regional maps and three
alternative projections for world maps. Adaptive composite map projections can
include a variety of other equal-area projections when the transformation between
the Lambert azimuthal and the world projections uses Wagner’s method. To select the
most suitable pseudocylindrical projection, the distortion characteristics of a pseudo-
cylindrical projection family are analyzed, and a user study among experts in the area
of map projections is carried out. Based on the results of the distortion analysis and the
user study, a new pseudocylindrical projection is recommended for extending adaptive
composite map projections. The new projection is equal-area throughout the transfor-
mation to the Lambert azimuthal projection and has better distortion characteristics
then small-scale projections currently included in the adaptive composite map projec-
tion technique.

Keywords: pseudocylindrical projection; adaptive composite map projections;
Wagner’s transformation; web mapping; web Mercator projection

1. Introduction: projections for web maps

Web map authors have two options when selecting a map projection for an interactive web
map. They can apply the same projection for all scales – which inevitably results in
excessively distorted maps at some scales – or they can adjust the projection when the
user changes map scale or the extent of the mapped area. When Google introduced its
mapping service in 2005, with the Mercator projection used for all map scales, it made the
Mercator projection the de-facto standard for web maps. Today, the Mercator projection is
commonly used for web maps by all major web mapping services. While the conformal
Mercator projection has advantages for maps at large scales, it is not well suited for small-
scale mapping because it shows the areas close to poles with enormous areal distortion.
This characteristic makes the Mercator projection an inappropriate choice for small-scale
maps, especially when the area of features or the density of features is being compared.
The Mercator projection also produces a map with infinite scale at the poles, which are
therefore impossible to display. Consequently, the web Mercator projection only displays
areas up to approximately 85° north and south (Figure 1).
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Adaptive composite map projections have recently been presented as an alternative to the
static web Mercator projection (Jenny 2012). This composite of map projections smoothly
transforms between different well-known map projections. Various projections are combined
according to the extent of the area shown on the map and the central latitude of the mapped
area, resulting in digital maps that can be equal-area for any map extent (Jenny 2012).

The adaptive composite map projection technique combines projections according to
John P. Snyder’s selection guideline for map projections (Snyder 1987). The Lambert
azimuthal projection is the key element of the adaptive composite map projection
technique. In accordance with Snyder’s recommendation, the Lambert azimuthal projec-
tion is used with oblique aspects for regional maps that show areas the size of a hemi-
sphere or a continent.

At larger scales, a combination of the Lambert cylindrical, the polar Lambert azi-
muthal, and the Albers conic projections are used (for details see Snyder 1987; Jenny
2012). The non-equal area Mercator projection is included for compatibility with existing
web mapping services only at very large scales, allowing for a seamless transition to the
Mercator raster tiles used by current web mapping services.

A variety of alternative projections for world maps can be combined with adaptive
composite map projections by blending between small- and medium-scale projections
(Jenny and Patterson 2013, Jenny and Šavrič in Press). However, projection blending
does not result in equal-area projections. The equal-area world map projections for the
adaptive composite map projection technique are currently limited to the Hammer, the
Eckert–Greifendorff, and the quartic authalic projections. These three small-scale world
projections can be converted into the medium-scale Lambert azimuthal projection, retain-
ing the equal-area property throughout the transformation. David Aitoff introduced this
transformation in 1889 (Aitoff 1889, Snyder 1993). It multiplies the abscissa of the
Lambert azimuthal projection by a selected factor (marked as B on Figure 2) and divides
longitudes by the same factor value (Equation 1) (Bugayevskiy and Snyder 1995). The
value of factor B changes with the map extent in the adaptive composite map projections
equations (Jenny 2012). Figure 2 presents a sequence of map projections where the value
of B grows from 1 to infinity.

Figure 1. The web Mercator projection.

2 B. Šavrič and B. Jenny

D
ow

nl
oa

de
d 

by
 [O

re
go

n 
St

at
e 

U
ni

ve
rs

ity
] a

t 0
8:

17
 0

5 
Ju

ne
 2

01
4 



x ¼ B
ffiffiffi
2

p
cosfsin λ=Bð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cosfcos λ=Bð Þ
p

y ¼
ffiffiffi
2

p
sinfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cosfcos λ=Bð Þ
p

(1)

where x and y are the projected coordinates, f and λ are the latitude and longitude, and B
is the transformation factor.

For uninterrupted equal-area world maps, aside from the Hammer projection, Snyder
(1987) recommends pseudocylindrical projections, that is, projections with straight par-
allels and curved meridians. The easy comparison of areas at the same latitude is one
advantage of pseudocylindrical projections. However, forcing the parallels of equal-area
projections to remain straight will unavoidably introduce distortion in peripheral parts of
the map. In non-pseudocylindrical projections, a slight bending of the parallels can reduce
this distortion.

The only pseudocylindrical projection so far included with adaptive composite map
projections is the quartic authalic projection. It represents the poles as points, which
considerably distorts polar areas. Most equal-area pseudocylindrical projections represent-
ing poles as lines have better distortion properties than projections representing poles as
points. Unfortunately, Aitoff’s transformation method always results in projections repre-
senting the poles as points and not as lines (Figure 2).

The goal of the research presented in this article is to develop a small-scale
pseudocylindrical projection with a pole line for adaptive composite map projections.
This offers users an alternative to the quartic authalic projection, for cases when they do
not wish to use a projection with curved parallels, such as the Hammer or Wagner VII
projections.

An appropriate small-scale pseudocylindrical projection has to meet the following
criteria. It should represent the poles as lines to minimize the distortion of areas at high
latitudes. It should be equal-area to allow for the comparison of areas. It should be
transformable to the Lambert azimuthal projection, and it should retain the equal-area

Figure 2. Transforming the Lambert azimuthal projection to the Hammer, the Eckert–Greifendorff,
or the quartic authalic projection using Aitoff’s transformation method. The B factor of Equation (1)
straightens the parallels to create a pseudocylindrical projection for B ¼ 1.
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property throughout this transformation. Despite the large number of small-scale projec-
tions invented in the past, one cannot find a projection meeting all of these requirements
(e.g., in projection directories and code libraries, such as Canters and Decleir 1989,
Snyder and Voxland 1989, Snyder 1993, or Evenden 2008). We use a method introduced
by Karl Heinrich Wagner (see the following section) for transforming the Lambert
azimuthal projection to various world map projections. This transformation results in a
variety of pseudocylindrical as well as non-pseudocylindrical projections. In this article,
we are analyzing the pseudocylindrical family and proposing a new pseudocylindrical
projection for adaptive composite map projections.

In the following sections, first, Wagner’s transformation method is presented as an
alternative to Aitoff’s method for transforming the Lambert azimuthal projection to world
map projections. After giving an overview of possible projections that can be created
using Wagner’s method, methods for analyzing the pseudocylindrical projection family
are presented, including a user study, where map projection experts design a pseudocy-
lindrical projection. The final section compares four candidate pseudocylindrical projec-
tions obtained from the analyses and proposes one of the four for inclusion in the adaptive
composite map projection technique.

2. Wagner’s transformation method

In 1932, the German cartographer Karl Heinrich Wagner suggested a transformation
technique for the development of new map projections, which he referred to as
Umbeziffern, meaning renumbering (Wagner 1931, 1932, 1941, 1949, 1962, 1982,
Canters 2002). Tobler (1964) translated the term to ‘re-labeling.’ Wagner (1932, 1949,
1962) presented three variations of this technique, with one maintaining the area distortion
characteristics of the parent projection. With this method, different equal-area projections
with straight or curved parallels can be created. For example, Wagner (1941) derived the
equal-area Wagner VII projection from the Lambert azimuthal equal-area projection using
this method (Figure 3). For the purposes of this article, the term Wagner’s transformation
refers to this area-preserving method, which Canters (2002) calls Wagner’s second
transformation method.

Wagner’s transformation method first maps the longitude and latitude values onto a
segment of the globe (Steps 1 and 2 on Figure 3). The segment of the globe (Step 1 on
Figure 3) is defined with a bounding parallel fB (mirrored along the equator), and a
bounding meridian λB (mirrored along the central meridian). The entire mapped area is
then projected onto this segment using an existing projection (Step 2 on Figure 3). After the
projection, the graticule is enlarged to the parent projection’s scale with a factor 1=

ffiffiffiffiffiffiffiffiffiffi
m % n

p

(Step 3 on Figure 3). The parameters m and n are computed with m ¼ sinfB and n ¼ λB=π.
The stretching factor k finally adjusts the graticule to the preferred equator/central meridian
ratio (Wagner 1941). The result is a new map projection (Step 4 on Figure 3). Equation (2)
below shows the general formula of Wagner’s transformation method.

x ¼ kffiffiffiffiffiffiffiffiffiffi
m % n

p % fx θ;nλð Þ

y ¼ 1
k

ffiffiffiffiffiffiffiffiffiffi
m % n

p % fy θ;nλð Þ
(2)

where sinθ ¼ m % sinf; m ¼ sinfB; n ¼ λB=π; k is the stretching factor, and fx and fy are
the original map projection equations.
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Karl Siemon (1936, 1937, 1938) formalized, expanded, and presented Wagner’s ideas
as a general theory of map projection transformation (Canters 2002). He also showed that
Aitoff’s transformation method is a special case of Wagner’s area preserving transforma-
tion (Siemon 1937). Böhm (2006) presented projections created with Wagner’s methods,
some of which are compromise projections created with the method that Canters (2002)
referred to as Wagner’s third transformation method.

3. Map projections derived from the Lambert azimuthal projection

Applying Wagner’s method to the Lambert azimuthal projection extends the set of small-
scale map projections for the adaptive composite map projection technique. Equation (3)
details the transformation of the Lambert azimuthal projection.

x ¼ kffiffiffiffiffiffiffiffiffiffi
m % n

p %
ffiffiffi
2

p
% cosθ sinnλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cosθ cosnλ
p

y ¼ 1
k

ffiffiffiffiffiffiffiffiffiffi
m % n

p %
ffiffiffi
2

p
% sinθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cosθ cosnλ
p

(3)

where x and y are the projected coordinates, f and λ are the latitude and longitude,
sinθ ¼ m % sinf; n, m, and k are parameters for Wagner’s transformation, defined as:

Figure 3. Wagner’s steps in deriving the Wagner VII projection from the Lambert azimuthal equal-
area projection using his transformation method (after Wagner 1941).
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m ¼ sinfB; n ¼ λB=π; and k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p % sin fB

2 =sin λB
2

q
; where fB and λB are the bounding

parallel and the bounding meridian, and p is the equator/central meridian ratio.
Equation (4) is the inverse projection converting Cartesian coordinates to longitude

and latitude.

λ ¼ 1
n
% arctan Z % X

2 % Z2 & 1

" #

f ¼ arcsin
Z % Y
m

" # (4)

where X ¼ x %
ffiffiffiffiffiffiffiffiffiffi
m % n

p
=k; Y ¼ y % k %

ffiffiffiffiffiffiffiffiffiffi
m % n

p
; Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& X 2 þ Y 2ð Þ=4

p
; and f and λ are

the latitude and longitude, x and y are the projected Cartesian coordinates, and n, m, and k
are parameters for Wagner’s transformation (see Equation 3).

Projections created from the Lambert azimuthal equal-area projection with
Equation (3) are defined with three variables: (1) the bounding parallel fB, (2) the
bounding meridian λB, and (3) the equator/central meridian ratio p. Since Wagner’s
transformation method preserves the equal-area property of the parent projection, the
resulting projection will always be an equal-area projection. Figure 4 represents different
projections created from the Lambert azimuthal projection. The bounding parallel fB is
varied from 90° (top row) to 0° (bottom row). The bounding meridian λB is varied from 0°
(left column) to 180° (right column). An equator/central meridian ratio p ¼ 2 is applied to
all graticules in Figure 4.

As shown by the graticules in Figure 4, the bending of parallels varies with the
bounding meridian λB. Similarly, adjusting the bounding parallel fB changes the bending
of the meridians. When the value of the bounding parameter decreases, parallels or
meridians appear less bent. Setting both bounding values to 0° results in a cylindrical
graticule with straight parallels and meridians (bottom left graticule in Figure 4). The
bounding parallel also defines the length of the pole line. A bounding parallel of 0° sets
the horizontal extent of the pole line to the length of the equator (bottom row in Figure 4).
When the bounding meridian equals 180° and the bounding parallel equals 0°, the border
meridians and pole lines have an infinite length.

A bounding parallel of 90° (top row in Figure 4) shows the poles as points. These
projections represent Aitoff’s transformation method that transforms between the Lambert
azimuthal (top-right), the Hammer, the Eckert–Greifendorff, and the quartic authalic
(top-left). All of the projections are stretched to an equator/central meridian ratio of p ¼ 2.
The intermediate graticule with a bounding meridian equal to 90° is the Hammer projection.

A bounding meridian at 0° longitude results in pseudocylindrical graticules (leftmost
column in Figure 4). They are the limiting case when parameter n in Equation (3)
approaches 0. Equation (5) is the forward projection and Equation (6) is the inverse
projection for the pseudocylindrical projection family.

x ¼
k0ffiffiffiffi
m

p % λ % cosθ
cos θ=2ð Þ

y ¼ 2
k0

ffiffiffiffi
m

p % sin θ=2ð Þ
(5)
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θ ¼ 2 % arcsin y % k 0 ffiffiffiffi
m

p

2

" #

λ ¼ x
ffiffiffiffi
m

p
% cos θ=2ð Þ

k0 % cosθ

(6)

where x and y are the projected coordinates, f and λ are the latitude and longitude,
sinθ ¼ m % sinf; m and k0 are parameters, defined as m ¼ sinfB and

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 % p % sin fB

2 =π
q

; where fB is the bounding parallel and p is the equator/central

meridian ratio.
The bending of the meridians and the length of the pole line both change with the

bounding parallel for the pseudocylindrical projections. The pole line varies from a point

Figure 4. Different equal-area graticules derived from the Lambert azimuthal projection using
Wagner’s transformation method. The ratio between the lengths of the equator and the central
meridian is 2:1 for all graticules.
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(when the bounding parallel is at 90°) to the length of the equator (when the bounding
parallel is at 0°). The length of the pole line can also be described as the ratio between the
equator and the pole line (q). For the pseudocylindrical projections derived with
Equation (5), the ratio q can be computed directly from the bounding parallel fB and
vice versa using Equation (7).

q ¼ cos fB=2ð Þ
cosfB

(7)

When the bounding parallel and bounding meridian are both equal to 0°, the result is
the cylindrical equal-area projection family. The graticule of the cylindrical equal-area
projection in Figure 4 (bottom left graticule) has a width-to-height ratio p ¼ 2, which is
the Smyth equal surface (Smyth 1870) or Craster’s limiting case of hyperbolic equal-area
projections (Craster 1929, Maling 1974) with a standard parallel at 37 '040. The standard
parallel fs of the cylindrical equal-area projection can be defined with the equator/central
meridian ratio p. Using Equation (8), other cylindrical equal-area projections (e.g. the
Lambert cylindrical equal-area) can be created from the Lambert azimuthal projection.

p ¼ π % cos2fs (8)

4. Methods for analyzing the equal-area pseudocylindrical projection family

With Wagner’s transformation method, adaptive composite map projections can be
extended with an entire family of small-scale map projections, as illustrated in Figure 4.
While the graticules in the bottom right corner of Figure 4 are not useful, the pseudocy-
lindrical projections in the leftmost column of Figure 4 are analyzed in this section. To
select the most suitable pseudocylindrical projection, the projections are analyzed with
two approaches. The first approach is a distortion analysis, where the overall angular and
scale distortion indices are computed for a set of candidate projections, and projections
with the best distortion properties are identified. The second approach takes the aesthetic
appearance of the candidate projections into account. Map projection experts are asked to
design a pseudocylindrical projection that appears the most graphically pleasing to them.
In the following sections, both approaches are presented.

4.1. Distortion analysis

The distortion characteristics of map projections can be quantified with overall distortion
measures. Since distortion varies throughout the mapped area, local metrics are aggre-
gated by discretizing space and computing global distortion indices for the entire grati-
cule. Canters and Decleir (1989) compare projections based on the mean scale, areal, and
maximum angular distortion values. Goldberg and Gott (2007) add flexion and skewness
indices. Čapek (2001) compares map projections using a distortion characterization
indicator, the percentage ratio of area, where area and angular distortions are acceptable.
In the map projection literature, scale distortion, area distortion, and maximum angular
distortion are the three most commonly used measures (e.g. Snyder 1987, 1993, Canters
and Decleir 1989, Canters 2002).

Since the candidate map projections in this study are all equal-area, their mean area
distortion is zero. However, the mean scale distortion and the mean maximum angular
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distortion values vary among projections. The weighted mean error in the overall scale
distortion index Dab and the mean angular deformation index Dan are computed for each
candidate projection with Equation (9) (Canters and Decleir 1989, Canters 2002).

Dab ¼
1
S

Xk

i¼1

aqi þ bri
2

& 1
" #

cosfiΔfΔλ

Dan ¼
1
S

Xk

i¼1

2arcsin
ai & bi
ai þ bi

" #
cosfiΔfΔλ

(9)

where Dab is the weighted mean error in the overall scale distortion, Dan is the mean
angular deformation, ai and bi are the scale factors along the principal direction at the

sample point, S ¼
Pk

i¼1
cosfiΔfΔλ is the sum of the area weight factors, fi is the sample

point latitude, Δf and Δλ are intervals in the latitude and longitude, k is the number of
sample points, and q and r coefficients are defined as

q ¼ 1 ai ( 1
&1 ai < 1

$
; r ¼ 1 bi ( 1

&1 bi < 1

$
:

For the distortion analysis of the pseudocylindrical projection family, a set of candi-
date projections is created using Equation (5). The candidate projections differ in their
bounding parallel fB and their equator/central meridian ratio p. The bounding parallel fB
defines the bending of the meridians and the length of the pole line. Values vary from 0°
(resulting in pole lines that have the same length as the equator) to 90° (resulting in poles
that are represented as points). For this study, we vary the values for the equator/central
meridian ratio p between 1 (the equator and the central meridian have the same length)
and 3 (the equator is three times longer than the central meridian). A candidate projection
is created for every half-degree of the bounding parallel fB and for every 0.01 unit change
of the ratio p. This results in 181 × 201 candidate projections. For each candidate, the
mean angular deformation index Dan and the weighted mean error in the overall scale
distortion index Dab are computed using Equation (9) for latitude and longitude intervals
of 2.5° (as used by Canters and Decleir 1989). Finally, the projections with the best
distortion indices are identified.

4.2. User study with map projection experts

A mathematics-based distortion analysis is a valuable tool for selecting a map projection.
However, personal taste and aesthetic preference are also major selection criteria. To take
this subjective aspect into account, experts in the area of map projections were invited to
design a projection. The projections suggested by the experts were compiled and aggre-
gated. The goal was to achieve a wider acceptance of the final projection for the adaptive
composite map projection technique.

Forty-four experts were invited to select their favorite member of the pseudocylind-
rical equal-area family derived from the Lambert azimuthal projection using Wagner’s
transformation method. The invited experts have authored articles or web pages about

International Journal of Geographical Information Science 9
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map projections during the last 10 years, or they are members of the International
Cartographic Association (ICA) Commission on Map Projections.

The study participants opened a web application with a world map on the left and
adjustable sliders on the right (Figure 5). The first slider adjusted the length of the pole
line (the bounding parallel fB parameter of the transformation), and the second slider
adjusted the equator/central meridian ratio p. For every change of the sliders, the map of
the world interactively displayed a new pseudocylindrical projection, as shown in
Figure 5. The dropdown menu below the sliders also enabled the display of three
background projections for comparison: the Eckert IV, the Robinson, and the Natural
Earth projection (Jenny et al. 2008, Šavrič et al. 2011). No distortion measures for the
displayed projections were provided to the experts. Participants were asked to adjust the
sliders and select their favorite choice based on their personal preference. When satisfied
with their selection, they submitted the selected values via email. They were also invited
to send comments concerning their suggested projection and the time they spent
creating it.

5. Results and final selection

5.1. Results of distortion analysis

The computed indices Dan and Dab (Equation 9) for all candidate projections can be
represented in diagrams with the bounding parallel fB and the ratio p as variables.
Figure 6 shows the mean angular deformation Dan, and Figure 7 shows the weighted
mean error in the overall scale distortion Dab. The horizontal axis represents the equator/
central meridian ratio in both figures. The bounding parallel values vary along the vertical
axis. The equator/pole line ratio q (Equation 7) is displayed on the right vertical axis of the
diagram. Selected example graticules illustrate the candidate projections. Their locations
on the diagram are marked with gray diamonds.

The projections with the lowest angular distortion Dan are those with a bounding
parallel fB smaller than 50° and a ratio p between 2 and 2.7 (Figure 6). Projections with
the lowest scale distortion Dab are those with a bounding parallel fB between 35° and 75°
and with a ratio p between 1.7 and 2.4 (Figure 7).

Figure 5. The web application designed for the user study. Sliders adjust the length of the pole line
(the bounding parallel fB parameter of the transformation) and the equator/central meridian ratio p.

10 B. Šavrič and B. Jenny

D
ow

nl
oa

de
d 

by
 [O

re
go

n 
St

at
e 

U
ni

ve
rs

ity
] a

t 0
8:

17
 0

5 
Ju

ne
 2

01
4 



The red dots in Figures 6 and 7 indicate projections with the best distortion indices.
The projection with the best mean angular deformation index is shown in Figure 8 (left). It
has an equator/central meridian ratio of 2.43 and a bounding parallel at 28°. It has slightly
bent meridians and the pole lines are almost the same length as the equator (the equator/
pole line ratio q is 1.10). Its graticule resembles that of cylindrical equal-area projections,
where areas close to the poles are strongly compressed in the north-south direction and
stretched in the east-west direction.

Figure 6. The mean angular deformation index for pseudocylindrical projections created by
varying the bounding parallel fB and the equator/central meridian ratio p. Blue areas represent
high mean angular distortion and red areas low mean angular distortion. The red dot on the diagram
indicates the projection with the least mean angular distortion. Gray diamonds on the vertical axes
mark locations of the sample graticules.

Figure 7. The weighted mean error in the overall scale distortion index for pseudocylindrical
projections created by varying the bounding parallel fB and the equator/central meridian ratio p.
Blue areas represent high mean scale distortion and red areas low mean scale distortion. The red dot
on the diagram indicates the projection with the least mean scale distortion. Gray diamonds on the
vertical axes mark locations of the sample graticules.
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The projection with the best weighted-mean error in the overall scale distortion index
is shown in Figure 8 (right). It resembles other well-known equal-area pseudocylindrical
graticules, such as the Eckert VI, Wagner IV (Putninš P2´), and Kavrayskiy VI (Wagner I).
The projection has an equator/central meridian ratio of 2.02 and a bounding parallel at
57.5°. The equator is 1.63 times the length of the pole line. Compared to the projection
with the best mean angular deformation index, the shapes of landmasses close to the poles
are less distorted, and equatorial regions are slightly more stretched in the north-south
direction because of a longer central meridian.

5.2. Results of the user study

Twenty-six experts participated in the study and submitted valid suggestions. In their
comments, most experts stated that they tried to find a balance between the north-south
stretching of the equatorial regions (caused by the equator/central meridian ratio) and the
shape distortion of Australia, South America, and East or South-East Asia (caused by the
convergence of the meridians). Most study participants reported not having used the
background projections and having followed their personal aesthetic judgment, as they
had been asked to do. Each of them spent 5–15 minutes for their selection.

Experts’ suggestions included diverse graticules. All of them selected projections that
show border meridians with a rounded shape and represent poles as lines. Figure 9 shows
the experts’ recommendations. The horizontal axis represents the equator/central meridian
ratio p, and the bounding parallel fB values are along the vertical axis (as in Figures 6 and
7). Figure 9 displays selected graticules to illustrate the range of received suggestions. In
the background of Figure 9, the weighted mean error in the overall scale distortion Dab is
shown by isolines.

Two patterns can be recognized in Figure 9. First, the equator/central meridian ratio is
equal to 2 in many of the suggested projections. Exactly half of the experts stated in their
comments that they first set the equator/central meridian ratio to 2, since this is equal to
the real ratio. Then, they adjusted the length of the pole line to visually balance the
distortion of the graticule.

The second pattern is that most of the suggested projections are similar to the
projection with the best overall scale distortion, which is marked with a solid dot in
Figure 9. Several experts even suggested projections that are very close to this projection,
despite not having any information about the distortion properties and only relying on
their personal visual judgment.

Taking into account the two patterns from Figure 9, two candidates for a pseudocy-
lindrical projection can be extracted from the experts’ suggestions. The first one is a
projection computed from the arithmetic mean of the suggested values in which the

Figure 8. Pseudocylindrical projections with the lowest mean angular deformation index (left) and
lowest weighted mean error in overall scale distortion index (right).
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weighted mean error in the overall scale distortion is less than 0.39 (18 projections). The
result is a projection (Figure 10, left) with an equator/central meridian ratio of 2.03 and a
bounding parallel at 61.9°. The projection is very similar to the projection with the best
overall scale distortion, only the pole lines are slightly shorter (the equator is 1.82 times as
long as the pole lines).

The second candidate can be extracted from projections with an equator/central
meridian ratio of 2. The majority of these recommendations also have an equator/pole
line ratio close to 2 (see Figure 9). Projections with such presumably aesthetically
pleasing proportions were derived many times in the past, including the Eckert VI,
Wagner IV, and Kavrayskiy VI. For these reasons, a projection with an equator/central
meridian ratio p and an equator/pole line ratio q equal to 2 is selected as a second

Figure 9. Projections suggested by 26 experts. Isolines indicate the weighted mean error in the
overall scale distortion (as in Figure 7). A solid dot marks the projection with the best overall scale
distortion.

Figure 10. A pseudocylindrical projection from the arithmetic mean of the experts’ suggestions
(left) and a pseudocylindrical projection with an equator/central meridian ratio p and an equator/pole
line ratio q equal to 2 (right).
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candidate from the experts’ suggestions. The projection has a bounding parallel at 65.1°
(Figure 10, right).

5.3. Final selection of a new equal-area pseudocylindrical projection

The distortion analysis and the survey resulted in four pseudocylindrical candidate
projections for inclusion in the adaptive composite map projections: (1) the projection
with the best scale distortion index (Figure 8, right), (2) the projection with the best
angular distortion index (Figure 8, left), (3) the projection from the mean values of
suggested parameters, where the weighted mean error in the overall scale distortion is
less than 0.39 (Figure 10, left), and (4) the projection with an equator/central meridian
ratio and an equator/pole line ratio of 2 (Figure 10, right).

Tables 1 and 2 compare distortion indices of the four candidate projections and other
projections that can be derived from the Lambert azimuthal projection using Wagner’s
transformation. Table 1 ranks projections based on the weighted mean error in the
overall scale distortion index Dab (Equation 9). The four candidate projections (except
for the projection with the best angular distortion) have better weighted mean errors in
the overall scale distortion index than the Hammer, the Eckert–Greifendorff, and the
quartic authalic projections. All of the projections with pole lines (including the non-
pseudocylindrical Wagner VII) have lower distortion indices than the projections show-
ing poles as points.

Table 2 compares projections based on the mean angular deformation index Dan

(Equation 9). As with scale distortion, the four candidate projections outperform the
Hammer, the Eckert–Greifendorff, and the quartic authalic projections.

Table 1. Weighted mean error in the overall scale distortion.

Wagner VII 0.37
Best scale (fB ¼ 57:5', p ¼ 2:02) 0.38
Experts’ mean (fB ¼ 61:9', p ¼ 2:03) 0.38
Ratios equal to 2 (fB ¼ 65:1', p ¼ 2) 0.38
Best angular (fB ¼ 28', p ¼ 2:43) 0.43
Hammer 0.43
Eckert–Greifendorff 0.45
Quartic authalic 0.47

Table 2. Mean angular deformation index.

Best angular (fB ¼ 28', p ¼ 2:43) 25.96
Best scale (fB ¼ 57:5', p ¼ 2:02) 29.50
Experts’ mean (fB ¼ 61:9', p ¼ 2:03) 30.27
Wagner VII 30.71
Ratios equal to 2 (fB ¼ 65:1', p ¼ 2) 31.00
Eckert–Greifendorff 35.50
Hammer 35.66
Quartic authalic 36.00
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The meridians of the projection with the best angular distortion are slightly curved,
which results in a graticule that is similar to that of cylindrical projections (Figure 8, left).
The projection considerably compresses polar areas in the north-south direction and
stretches the same areas in the east-west direction. Furthermore, the projection has the
largest weighted mean error of overall scale distortion among all of the candidates. For
these reasons, it can be expected that cartographers would not routinely apply this
projection for a world map.

The other three pseudocylindrical projections have similar appearances, and their
weighted mean error for overall scale distortion values are identical (Table 1). They differ
slightly based on the lengths of the central meridian and the pole line. The pseudocylind-
rical projection derived using the arithmetic mean has a better mean angular deformation
index than the projection with ratios of 2. Hence, this pseudocylindrical projection is
recommended for inclusion in the adaptive composite map projection technique
(Figure 10, left).

6. Conclusion

Wagner’s transformation method extends the set of equal-area small-scale map projec-
tions for adaptive composite map projections. In particular, pseudocylindrical projec-
tions can be created that represent poles as lines. We suggest a new equal-area
pseudocylindrical projection based on distortion analysis and a user study of projection
experts. The parameters for Wagner’s transformation of this projection use a bounding
parallel fB ¼ 61:9' and an equator/central meridian ratio p ¼ 2:03 (Equations 5 and 6,
Figure 10, left). The suggested pseudocylindrical projection has better mean scale
distortion than the Hammer, the Eckert–Greifendorff, or the quartic authalic projections
suggested for the original adaptive composite map projections.

To transform the projection to the Lambert azimuthal projection, the parameters
transition to λB ¼ 180', fB ¼ 90', and p ¼

ffiffiffi
2

p
(Equations 3 and 4). This transition is

accomplished with a linear interpolation when the user adjusts the map extent. The equal-
area property is maintained throughout the transition, and inverse projection equations
exist for the new projection and the transition.

In addition to the suggested pseudocylindrical projection, Wagner’s transformation
method enables the inclusion of two well-known map projections. The first projection is
the cylindrical equal-area projection, which is not suitable for small-scale mapping
because of its distortion characteristics, but it is useful at larger scales for mapping
equatorial areas. The second projection is the Wagner VII (with λB ¼ 60', fB ¼ 65',
and p ¼ 2). The Wagner VII projection has advantageous distortion properties
(see Tables 1 and 2). The map author now has a choice between the Wagner VII
projection with curved parallels and less distortion in peripheral areas and the new
pseudocylindrical projection with straight parallels and moderately larger distortion in
peripheral areas.
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