
Modular Web-Based Atlas Information Systems

Bernhard Jenny
Institute of Cartography / ETH Zurich / Zurich / Switzerland

Andrea Terribilini
OneOverZero / Zurich / Switzerland

Helen Jenny
Institute of Cartography / ETH Zurich / Zurich / Switzerland

Radu Gogu
Department of Geotechnical Engineering and Geo-sciences / School of Civil Engineering / Technical

University of Catalonia / Barcelona / Spain

Lorenz Hurni
Institute of Cartography / ETH Zurich / Zurich / Switzerland

Volker Dietrich
Institute for Mineralogy and Petrography / ETH Zurich / Zurich / Switzerland

Abstract

Atlas information systems (AIS) present spatial information on predefined themes and localities in the form of maps and
other representations, generally focusing on correct cartographic appearance and offering a certain degree of user
interaction. This article introduces the concept of modular AIS, a concept that is essential for the development of an AIS
with modern computer technology. The main advantages of a modular architecture are twofold: first, an AIS software
framework based on a modular architecture allows for easy and rapid customization to a certain theme and locality;
second, functional enhancements and new technologies can be easily integrated into a modular AIS in order to optimally
present and analyse the data at hand.

Web-based AIS can benefit from the concept of modularity at three different levels: (1) The AIS client can adjust its
functionality and adapt to the available technology on the present computer platform. (2) The AIS server can build an AIS
client with custom-tailored data and functionality in real time, depending on the user’s access rights, needs, or expertise.
(3) Distributed, modular data storage greatly simplifies the design, implementation and maintainance of an AIS by using a
mediation system.

To illustrate the concepts presented, we will discuss selected technical aspects (e.g., Web-based map viewer technology,
client–server communication), and describe an exemplary Web-based AIS that extends the modular core architecture
through specialized functionalities for the analysis of geophysical data. It is the authors’ hope that the ideas presented will
provide an introduction to the technical concepts for designers and developers of similar Web-based atlas information
systems.

Keywords: interactive web cartography, customizable, distributed, component-based mapping architecture, Java, SVG, natural hazards

cartographica (volume 41, issue 3) 247



Résumé

Les systèmes d’information cartographique (AIS) schématisent des données spatiales sur des localités et des thèmes
prédéfinis sous forme de cartes ou d’autres modes de représentation, orientés en général vers une apparence
cartographique précise et attribuant un certain degré d’interaction à l’utilisateur. Le présent article présente le concept
d’un AIS modulaire, en tant que concept essentiel au développement d’un AIS lié à la technologie informatique moderne.
Deux des principaux avantages d’une architecture modulaire sont d’abord un cadre logiciel AIS basé sur une architecture
modulaire qui permet de personnaliser facilement et rapidement un certain thème et une certaine localité, et ensuite
l’intégration facile des améliorations fonctionnelles et des nouvelles technologies dans un AIS modulaire afin de d’analyser
et de présenter les données existantes de façon optimale.

Un AIS sur le Web peut tirer avantage du concept de modularité à trois niveaux : 1) le client AIS peut régler sa
fonctionnalité et s’adapter à la technologie disponible sur la plateforme informatique actuelle; 2) le serveur AIS peut créer
un client AIS avec des données sur mesure et une fonctionnalité en temps réel en fonction des droits d’accès, des besoins,
ou de l’expertise de l’utilisateur; et 3) le stockage modulaire des données réparties simplifie la conception, la mise en
oeuvre et la maintenance d’un AIS à l’aide d’un système de médiation.

Pour illustrer les concepts présentés, nous discutons d’aspects techniques sélectionnés (par ex., technologie de
visualisation cartographique sur le Web, communication client-serveur), et donnons un exemple d’un AIS sur le Web qui
étend l’architecture modulaire de base par le truchement de fonctionnalités spécialisées pour l’analyse des données
géographiques. Les auteurs espèrent que les idées présentées serviront d’introduction aux concepts techniques pour les
concepteurs et les développeurs de systèmes d’information cartographique similaires sur le Web.

Mots clés : cartographie web interactive, architecture cartographique adaptable et distribuée basée sur des composants, Java, SVG,
dangers naturels

Today’s Atlas Information Systems

Enhancing computer-based atlas information systems (AIS)
with the concept of modularity offers many advantages, the
two most important being effortless adaptation of the AIS
to new themes and geographic areas and easy extension of
an AIS with specialized functionality. This article will
present the proposed modularity concept that was
developed for Web-based AIS before describing the details
of the proposed enhancements.

The term ‘‘geographic information systems’’ (GIS) does
not refer to a single, clearly defined type of software
application. Instead, it encompasses a family of different
applications that share the common aspects of storing,
mapping, and analysing spatial data. An atlas information
system (AIS) can be considered a type of GIS that differs
substantially in certain respects from conventional GIS:
‘‘Atlas Information Systems are computerized geographic
information systems related to a certain area or theme in
conjunction with a given purpose – with an additional
narrative faculty, in which maps play a dominant role’’
(van Elzakker 1993, cited in Ormeling 1995, 2127).
Analogous to the classical paper atlas, an AIS presents
spatial information on predefined themes and localities.
Using digital media, the AIS provides information in the
form of maps, alternative spatial representations, and
multimedia content. The user influences map content
and appearance by combining map layers and changing
visualization parameters. The system may also allow the
user to integrate personal geo-information. An AIS must
offer an interface that inexperienced users can easily grasp.
To promote user interest, and so as not to overstress the

user’s patience, system response time should be fast,
a requirement that disqualifies slow-performing simula-
tions and computations. Barbara Schneider (1999)
provides a more detailed characterization of atlas
information systems.

The distribution of AIS relies on two methods: (1) physical
media, such as CD-ROM; or (2) Internet retrieval.
We concentrate in this article on AIS provided via the
Internet, which we classify as follows:

� Entirely Web-based AIS are client–server applications
that rely on the Internet to transmit all data and
program code. The client component is integrated
into a Web page and uses a Web browser as the host
application. For the system programmer, this
integration reduces the range of viable technologies
and programming languages, since only those
supported by Web browsers are available. Entirely
Web-based AIS do not require users to install
software applications on their computers. Instead,
the Web browser always receives the most up-to-
date data and system functionalities. Despite these
advantages, however, the limited bandwidth of the
Internet still hinders the distribution of large data
sets, including those involved in distributing AIS.
� AIS with online update capability require initial

installation from a CD-ROM or similar medium
(Hurni, Bär, and Sieber 1999). Up-to-date informa-
tion is subsequently downloaded from a server,
allowing the system author to distribute updated or
corrected maps. Since such an AIS may run inde-
pendently from a Web browser, the programmer can

Bernhard Jenny et al.

248 cartographica (volume 41, issue 3)



choose from a wider range of different technologies
and programming languages.

Modularization of AIS

In the previous section of this paper we reiterate that
today’s Web-based AIS offer a user-friendly graphical
interface and emphasize the quality of cartographic
presentation. Their functionality and data are (fully or
partially) distributed throughout the Internet.

Modularity is an advantageous enhancement of current
AIS. A modular software architecture consists of a
core framework combined with a set of task-specific
modules. The author of a new AIS can select the required
modules and combine them with the core framework
to build a custom-tailored AIS. The resulting system
offers exactly the functionality that the user needs.
If an AIS requires a specialized functionality that
is currently not offered by any module, an additional
module must be developed. The new module must
adhere to well-defined communication rules and
behavioural patterns. This ensures that the core
framework can handle any module, independent of its
specific functionality.

An Internet-based AIS usually follows the classical
client–server paradigm. Modularity can be successfully
applied to the implementation of both parties. On
the server side, modular software architectures such
as Enterprise Java Beans (EJB) are widely used today,
not only by GIS-related server applications but also by
almost every imaginable area of computing, because they
greatly facilitate the development of new software.

In contrast to the well-established server-side modularity,
AIS clients generally do not use modular architectures.
Modularity allows for the customization of client software
by integrating only the required functionality into the
final client. This offers three main advantages:

1. The size of the client software is minimized, which
reduces download time.

2. The user interface contains only indispensable
elements, which makes the AIS easy to learn and
control. Our example client-side framework uses
two types of modules: (1) general-purpose mapping
modules that accomplish functions required by
most AIS (e.g., map layer composition or naviga-
tion in a map) and (2) specialized modules that
extend the functionality of an AIS in a particular
area of expertise.

3. Modularity also allows for the construction of
customized applications in real time. A server can
add selected modules to the framework depending
on the user’s access rights, needs, or expertise. The
user then receives a personalized AIS ‘‘on demand.’’

Data storage is another important area that can be
extended by the concept of modularity. Distributed
(or modular) data storage can facilitate maintenance of
AIS data. Modular data-storage systems are generally
accessed through a central access point provided by a
server that hides the underlying modularity (or distribu-
tion) of data sources.

In the context of this article, therefore, we define a
modular Web-based AIS as follows: A modular Web-
based AIS is an AIS as defined by van Elzakker (1993,
cited in Ormeling 1995) that additionally possesses a
customizable, modular system architecture and the
capability of retrieving data and system functionalities
via the Internet.

A Modular Web-Based AIS Client

The modular Web-based AIS client presented in this
section can be easily and rapidly adapted to different types
of applications. Its core framework implements the basic
elements of an entirely Web-based AIS. Our AIS client uses
vector data for map rendering and accesses distributed
sources to retrieve data. A series of modules extends the
framework and offers the user AIS functionality combined
with a graphical user interface.

AIS FOR THE INTERNET

Our Web-based AIS follows the client–server architecture
with a series of clients connecting to one central server.
The client can download raw attribute data and
transform them to interactive and animated maps,
diagrams, and other presentations. The client does not
necessarily have to perform all the computation that an
analysis or visualization requires. Time- or data-intensive
tasks can also be delegated to an application server in
order to accelerate computation and reduce data
transfer time.

In the developed system, the client is integrated into
a platform-independent Internet browser. The core
framework uses Java technology. Java is a cross-platform,
object-oriented programming language, complemented
by a powerful set of functionalities. To the developer of
an AIS, it offers important functionalities such as
networking, security management, object serialization,
database connection, and data retrieval. Most
importantly, it facilitates the design of modular software
architectures.

CUSTOMIZING AN AIS CLIENT BY MODULES

Our client consists of a core framework and a set of
standard and specialized modules. This architecture
allows for flexible adaptation of the system to different
AIS scenarios (i.e., customized AISs for different users)

Modular Web-Based Atlas Information Systems

cartographica (volume 41, issue 3) 249



and different localities or themes. When loading the
access page, the Web server assembles the needed modules
in order to form the custom-tailored application.

After the modules are assembled with the core framework,
the client software is delivered to the client’s computer.
The framework is then responsible for activating
exactly one module at a time. The active module provides
the currently visible graphical user interface and
interacts with the map. The user of the AIS can choose
the active module using a graphical control element
(Figure 1). Upon user request, the framework
deactivates the currently active module and configures
and activates the newly chosen one (Figure 2). This
mechanism requires the modules to comply
with a straightforward application programming
interface (API). The API is used to load, activate, and
configure modules.

The framework offers a pool of services to the currently
active module (Figure 2). For instance, the Resource

Loader service loads data from a server, while the Map
Controller service interacts with the map; both will
be discussed later. These services facilitate the implemen-
tation of additional modules, since they assume tasks
that are recurrent or are critical to performance or
security. Using the services reduces the complexity of
additional modules and minimizes the programming
effort necessary to implement them. A welcome side effect
is the reduction of the application size, which, in turn,
reduces download time.

MAP VIEWER MODULARITY

High-quality rendering of interactive maps in vector
format requires time-consuming computations. At the
time of implementation, four technologies were available
for this task: Macromedia Flash (Adobe 2006), Scalable
Vector Graphics (SVG; W3C 2006), Java 2D (SDN
1994–2006), and Virtual Reality Modeling Language
(VRML; Web3D Consortium n.d.). Each comes with its
respective advantages and problems, depending on the
platform and Web browser on which it is running. We
compared the four technologies during an evaluation
phase (Jenny, Freimark, and Terribilini 2002). The result
was that the development of a Java 2D–based viewer
would have been more time intensive because of the
required programming effort. Additionally, Java 2D
rendering with anti-aliasing was found to be slower than
rendering with Flash or SVG viewers; response time is
a crucial criterion for maps that react on user actions
(e.g., mouseover events that change the colour of map
elements). The two-dimensional output of current VRML
renderers (which are primarily optimized for three-
dimensional models) could not meet our demands for
high-quality graphics. Finally, SVG was favoured over

Interface

of active

module

Map Viewer

Web Browser

Selection of

active module

(a)

(b)

Figure 1. The active module and the map share space on the
Web browser interface. Above: Schema of the active module
and the Map Viewer. Below: Screenshot of the GEOWARN AIS
(described in the last section of the article).

Map
Controller
Service

Resource
Loader
Service

...
Service

Core Framework API

Active
Module

Inactive Modules

Figure 2. Framework for managing modules and services.

Bernhard Jenny et al.

250 cartographica (volume 41, issue 3)



Flash because SVG is an XML-based format that is easily
generated and can be edited with standard text editors. An
SVG graphic may contain text, images, and Bézier line art.
The Adobe SVG Viewer is the most widespread plug-in
for Web browsers. It renders high-quality graphics with
anti-aliasing and transparency.

Since we cannot foresee the development of future
graphics standards for the Internet, the rendering
module should be easily replaceable. The described
framework therefore wraps the rendering engine in
an exchangeable code module called Map Viewer. The
Map Controller is a complementary service module that
supervises the Map Viewer. As described in the previous
section, the Map Controller is an example of a service
provided by the core framework (see Figure 2). It manages
the two-way communication between the active module
and the Map Viewer (Figure 3). The active module
can send commands to the Map Viewer to hide, show,
add, remove, or graphically change a map element. In
the other direction, the Map Viewer alerts the active
module when mouse events occur (mouse-over-element,
click-on-element, etc.).

The Map Controller offers a viewer-independent
programming interface for communication between
the active module and the Map Viewer. It relies
on an exchangeable Communication Bridge that
converts the Map Controller’s messages to commands
understandable by the Map Viewer, and vice versa. This
architecture ensures effortless integration of future
rendering technologies. It can also be used to select a
specific viewer from a range of supported alternatives,
depending on their availability on the client’s computer.
In the event of integrating a new type of Map Viewer,
only a new Communication Bridge has to be created.

Figure 4 illustrates how the Map Controller
communicates with the Adobe SVG Viewer using
a specialized Communication Bridge component.
Messages between the Map Controller and the
Map Viewer traverse two layers that transform Java
commands to JavaScript code that can be understood
by the SVG Viewer (ECMAScript is the standardized
version of JavaScript; see ECMA International 1999).
This modular architecture can be easily adapted to
other JavaScript-based viewer technologies by exchanging
the second layer, labelled ‘‘JavaScript to SVG Converter’’
in Figure 4. For future alternative map viewers that
do not understand JavaScript (e.g., a map viewer based on
Java 2D), the Communication Bridge component would
have to be replaced.

CLIENT–SERVER COMMUNICATION

AIS clients access their server for data retrieval. Server
access can be triggered by a user action or autonomously,
by a software module, when it needs additional data to

analyse or display. This section explains how clients query
data from a server. Access of the server to distributed data
sources will be discussed in a later section.

Client–server communication is illustrated by means
of an exemplary AIS client module that queries the
temperature of a water spring and displays the tempera-
ture in its user interface (see upper part of Figure 5).
In our example, the data flow is initialized when the user
clicks on a map symbol representing a spring. The click
generates an event that is transferred to the module,
which subsequently requests the temperature of the spring
from the server. The server returns this information, and
the module displays the temperature in a text field.

Figure 5 illustrates the data flow through the different
components. The Map Viewer informs the Map
Controller of the event by sending it a click event (1).
The Map Controller delegates this event to the currently
active module (2). After analysing the event, the active
module delegates the loading of the temperature data to
the Resource Loader Service provided by the core
framework (3). The Resource Loader Service sends
a request to the server using standard HTML technique
(4). The server returns the requested data in the form
of an XML-formatted table (5). The Resource Loader
Service passes the data to the active module that
started the request (6). It is then the module’s task to
parse and interpret the data and present them to the
user in graphical form. In our example, the
resulting table contains a single value, the spring’s temper-
ature. The module finally extracts the temperature from
the table and displays it in the user interface (7).

The complete process, starting with a click by the user on
a spring symbol and ending with a temperature being
displayed, may appear rather complicated. Yet the
programmer of the module can use the services provided
by the core framework. Most modules will use the Map
Controller Service to interact with the map and the
Resource Loader Service to communicate with the server.
If needed, additional services can be used, for example,

Map

Controller

Service

Communication

Bridge

Map Events

Commands

Active

Module

Framework

Map

Viewer

Figure 3. Communication between the active module and
the map viewer.

Modular Web-Based Atlas Information Systems

cartographica (volume 41, issue 3) 251



to display data in diagrams, to analyse special types of
data, or to parse XML data. The services will greatly
simplify the task of the programmer, who only has to take
care of the following three steps:

1. Receive mouse-click events and communicate with
the Resource Loader Service to retrieve data.

2. Display the returned data in a graphical user
interface.

3. Write an XML description of the query and the
connection for server-side data retrieval (described
in the next section).

MODULAR AIS SERVER AND DATABASE

The server side of Web-based AIS uses modularity in two
distinctive areas. First, the software application running

on the server and providing clients with data and services
is usually based on a modular architecture. Second, data
are modularly distributed to multiple databases for data
storage.

The server-side software of an AIS server fulfils three
AIS-specific tasks:

1. It generates the AIS clients by adding modules to
the clients’ core framework.

2. It provides and coordinates access to distributed
data sources.

3. It supplies specialized services to client modules
that require server-based functionality (e.g., data
analysis or computation of visualizations that
require large data sets or large computation
capacity). The required functions are very specific
to the AIS and its data. Furthermore, this type of
modular architecture is well established and widely
used (e.g., Servlets or EJB). For these two reasons,
this type of server task is not discussed in this
article.

ASSEMBLING AIS CLIENTS

An entirely Web-based AIS does not require users
to install any software or data on their computers.
Instead, the user accesses the AIS through a standard
Web browser and loads a Web page that embeds
the client software. The server can deliver the same
assembled software to every client computer or deliver
different software depending on the user’s access rights,
needs, or expertise. The client software can be further
individualized by assembling the application at runtime.
This allows for a completely customized AIS client
whereby users can choose not only which data they
would like to see and analyse but also which functionality
they would like to use.

When assembling an AIS client, the server creates a copy
(or ‘‘instance’’) of a module before adding it to the
framework. Thus, the server can add multiple instances of
a module to the framework and configure them
differently. In our previous example, an AIS could use a
first instance to display the springs’ temperatures and a
second one to display their discharges. The server
would pass different data sources to the two instances.
This mechanism not only allows for configuring the data
source but can also be used to alter the instances’

Interface
of Active
Module

MapViewer 

Temp: 84°F

Click
Event

Temperature
Value

Map
Controller
Service

Resource
Loader
Service

Active
Module

Request
(HTML)

Response
XML Data

Server

➊

➋

➌

➍➎

➏

➐

Figure 5. Data flow of an exemplary module displaying the
temperature of springs.

Map Controller Communication Bridge

Java to

JavaScript

Converter

JavaScript

to SVG

Converter

SVG

DOM

API
Map Events

Commands Map Viewer

Adobe

SVG

Viewer

Figure 4. The Communication Bridge for the Adobe SVG Viewer.

Bernhard Jenny et al.

252 cartographica (volume 41, issue 3)



graphical user interface. In the example, the server would
pass appropriate parameters to change the graphical
interface from ‘‘Temp.: 84 F’’ to ‘‘Discharge: 0.8m3 per
min.’’ A module could offer even more advanced options
to configure its behaviour, data sources, graphical user
interface, and so on.

DISTRIBUTED DATA SOURCES

An entirely Web-based AIS usually cannot hold all
potentially necessary data on the client’s computer. This
would strain the storage capabilities of the host browser
and cause unacceptably long download periods. To
overcome these shortcomings, a Web-based AIS relies
on a server for storage, extraction, analysis, and synthesis
of data. AIS need very different types of data that are best
stored in their native formats. It may also be advantageous
to store data on different servers (e.g., in spatial data
infrastructures) for distributed updating and maintenance
of the data. This results in programmers having to
confront a wide variety of different formats, query
languages, and data locations. To facilitate the develop-
ment of AIS modules, a single access point is required that
hides the details of the underlying data sources, structures,
locations, and access mechanisms. Mediator-based data
access provides this type of service.

DATA MEDIATOR

A mediator-based system includes an application
layer, a mediation layer, and a foundation layer, portrayed
from left to right in Figure 6 (Wiederhold 1992).
In the case of an AIS, the application layer corresponds
to the AIS client. It requests and receives data
from the mediation layer, which is a specialized part
of the AIS server. The foundation layer may consist
of heterogeneous data sources that can be stored
on diverse servers and use different database engines
and formats. Specialized software wraps each data source
and offers a homogenized view.

With this architecture in place, the AIS client can request
data by sending a query to the server-side mediator

system. The mediator subsequently asks for data from the
foundation layer and returns the result in an easily
readable XML format. Note that a single query may
request data from more than one source. In such a case,
the mediator dispatches the request to the data sources
concerned, assembles the returned fragments, and sends
this final result back to the client.

The AIS described here stores the details of each
request on the server (the databases involved, the SQL
commands to execute, etc.). Each request is labelled with
a unique name that is used by the client to identify the
desired request. Thus, the client does not need to know
anything about the data sources involved; the name of
the request, together with some parameters, completely
defines the request. The main advantage of this strict
separation is that changes to the data structure are
possible without modifying the client. After changing the
database structure, only the descriptions on the server
must be updated – changes to the client-side code are
not necessary.

Extending an AIS Client by Modules

This section presents example client modules that have
been developed and used for different projects. All
modules extend the basic framework and use its different
services.

GENERAL-PURPOSE MAPPING MODULES

The module for layer editing shows and hides map layers
and changes their symbolization (Figure 7). It allows
the user to load additional map layers by selecting them
from a list. Currently, three different types of layers
are supported: raster images, vector line work, and points.
The module relies on the Resource Loader service to
load additional map layers. It uses the Map Controller
service to integrate the new layers into the map. The
module also allows the user to change the graphical
appearance of vector layers by specifying colours, line
widths, and transparency.

Client Internet Mediator
(Server)

XML Formatted Response

Request (Name+Parameters)
Data 1

W
ra

pp
er

Data N

W
ra

pp
er

Foundation LayerMediation LayerApplication Layer

Figure 6. Mediator system wrapping heterogeneous data sources.

Modular Web-Based Atlas Information Systems

cartographica (volume 41, issue 3) 253



Another elementary module offers zooming and panning
capabilities (see Figure 1). Using this module, the user
can graphically or numerically enter the new centre of
the view and the new map scale. The Navigation Module
uses the Map Controller service to scale and re-centre
the map.

The user can measure distances and areas on a map using
the module shown in Figure 8, which also interacts with
the map through the Map Controller service.

The diagrams in Figure 9 show the evolution of
temperature and electrical conductivity of three different
springs over time. A specialized module produces the
diagrams. Parameters passed at initialization determine
the module’s interface, the data sources, and the
type of diagram. The module can thus be easily adapted
to different data types, data sources, and database
structures.

GEOWARN AIS

The concept of modular Web-based AIS was originally
developed for the Geo-Spatial Warning Systems
(GEOWARN) project, funded by the European
Commission (GEOWARN 2003). The aim of
GEOWARN is to develop methods and systems for the
surveillance of quiescent but still active volcanoes (Lagios
and others 2001). A major part of the project was
dedicated to the development of an AIS that embeds all
relevant data sets of a volcanic field into a single
cartographic system. Uses of the application include
scientific analysis, emergency and land use planning,
and allowing casual users (civil protection) to
make decisions in the event of a seismic or volcanic
crisis. GEOWARN uses the volcanic island of Nisyros (in
Greece, south of Kos) as a test site that shows high
seismic unrest and widespread fumarolic activity.
The GEOWARN AIS extends the core framework with a
set of custom-tailored modules that facilitate analysis
and visualization of diversified geophysical data col-
lected during the project (Chiodini and others 2002;
Dietrich and Hurni 2002; Gogu and others 2006; Lagios
and others 2001).

The screenshot in Figure 10 shows the module for the
analysis of a regularly spaced raster grid. The example
shows heat flux in a volcanic caldera. The corresponding
module loads and displays a thematic grid using a
customizable colour scale. The module handles queries
of single grid values and allows for statistical measure-
ments and animated time series of grids.

The module illustrated by Figure 11 extracts profiles from
a three-dimensional tomographic model of subsurface
geology below Nisyros. The user defines the position of
the desired profile graphically on the map. The module
then sends the position of the profile to an application
server that extracts the profile from a tomographic

Figure 7. Screenshots of the module for layer editing.

Figure 8. Measurement of an area.

Figure 9. Display of diagrams.

Bernhard Jenny et al.

254 cartographica (volume 41, issue 3)



voxel model. The server returns the resulting profile
as a thematic grid to the active module. The user
finally analyses this grid with the functionality described
above.

Microseismic events (i.e., seismic events with a magnitude
of 3 or less on the Richter scale) are important for the
understanding of volcanic processes. A seismic event is
defined by a three-dimensional position and a magnitude.
The module shown in Figure 12 projects seismic events
on a vertical profile, which is then shown in a diagram.
The position of the profile can be chosen interactively on
the map. The diagram includes only those points lying
within a certain distance of the profile.

Conclusion

In addition to the GEOWARN AIS described above, the
architecture presented was successfully implemented for

AIS of other locations (e.g., an AIS for Campi Flegrei,
a volcanic area near Naples, Italy) and in other specialized
applications (e.g., a hiking route planner supporting
multi-criteria net analysis). Our experience with the
modular system was very positive, since it proved to be
easily configurable and adaptable to these applications.

On the client side, the modular AIS uses a thin, platform-
independent client that is easily scalable to different
applications. Its modular architecture allows for rapid
integration of new custom-tailored functionality, and its
map-viewer architecture can be adapted to future or
alternative Web techniques.

The server side uses standard technology (EJB and Java
Servlets) that greatly accelerates and simplifies the
development of the application server. The separation of
the data sources from the rest of the AIS allows multiple
data owners to independently update or correct their data,
which ensures long-term usability of the AIS.

An entirely Web-based AIS automatically provides the
end user with the most recent data and functionalities;
complicated installation procedures are unnecessary.
The utility of the system is further enhanced by a
user-friendly interface and map data that are cartogra-
phically pre-treated in order to optimally communicate
the information.

Author Information

Bernhard Jenny, Institute of Cartography, ETH
Zurich, CH-8093 Zurich, Switzerland. E-mail:
jenny@karto.baug.ethz.ch.

Andrea Terribilini, OneOverZero, Müllerstrasse 8,
CH-8004 Zurich, Switzerland. E-mail:
andrea.terribilini@oneoverzero.net.

Figure 10. Analysis of raster grid.

Figure 11. Extraction of 3D model.

Figure 12. Projection of seismic events on a profile.

Modular Web-Based Atlas Information Systems

cartographica (volume 41, issue 3) 255



Helen Freimark, Institute of Cartography, ETH
Zurich, CH-8093 Zurich, Switzerland. E-mail:
freimark@karto.baug.ethz.ch.

Radu Gogu, Department of Geotechnical Engineering and
Geo-sciences, School of Civil Engineering, Technical
University of Catalonia (UPC), 08034 Barcelona, Spain.
E-mail: radu.gogu@upc.edu.

Lorenz Hurni, Institute of Cartography, ETH
Zurich, CH-8093 Zurich, Switzerland. E-mail:
hurni@karto.baug.ethz.ch.

Volker Dietrich, Institute for Mineralogy and
Petrography, ETH Zurich, CH-8093 Zurich, Switzerland.
E-mail: dietrich@erdw.ethz.ch

References

Adobe Systems Inc. 2006. ‘‘Macromedia – Flash
Professional 8.’’ Available at http://www.adobe.com/
products/flash/flashpro/

Chiodini, G., T. Brombach, S. Caliro, C. Cardellini, L. Marini,
and V. Dietrich. 2002. ‘‘Geochemical Evidences of an Ongoing
Volcanic Unrest at Nisyros Island (Greece).’’ Geophysical
Research Letters 29: 16.

Dietrich, V., and L. Hurni. 2002. ‘‘GEOWARN ein Frühwarn-
Informations-System für Vulkane.’’ Spektrum der
Wissenschaften, March: 26–28.

ECMA International. 1999. Standard ECMA-262: ECMAScript
Language Specification, 3rd ed. Available at http://
www.ecma-international.org/publications/standards/Ecma-
262.htm

Geospatial Warning Systems [GEOWARN]. 2003. ‘‘Geowarn –
Geospatial Warning Systems – Nisyros Volcano, Greece.’’
Available at http://www.geowarn.ethz.ch/

Gogu, R. C., V. J. Dietrich, B. Jenny, F. M. Schwandner, and
L. Hurni. 2006. A Geo-spatial Data Management System for

Potentially Active Volcanoes – GEOWARN Project. Computers
and Geosciences 32: 29–41.

Hurni, L., H.-R. Bär, and R. Sieber. 1999. ‘‘The Atlas of
Switzerland as an Interactive Multimedia Atlas Information
System.’’ In Multimedia Cartography, ed. William Cartwright,
Michael P. Peterson, and Georg Gartner. Berlin: Springer.
99–112.

Jenny, B., H. Freimark, and A. Terribilini. 2002. ‘‘Entwicklung
eines kartographischen Internet-Mapservers und eine erste
Anwendung in der Geophysik.’’ Proceedings of GIS/SIT 2002
(CD-ROM). Zurich: ETH.

Lagios, E., V. Dietrich, G. Stavrakakis, I. Parcharidis, V. Stakkas,
and S. Vassilopoulou. 2001. ‘‘Will Nisyros Volcano (GR)
Become Active? Seismic Unrest and Crustal Deformation.’’
European Geologist 12: 44–50.

Ormeling, F. 1995. ‘‘Atlas Information Systems.’’ Proceedings
of the 17th International Cartographic Conference,
Barcelona, vol. 2: 2127–133.

Schneider, B. 1999. ‘‘GIS Functionality in Multimedia Atlases:
Spatial Analysis for Everyone.’’ Proceedings of the 20th
International Cartographic Conference, Beijing, vol. 2:
829–40.

Sun Developer Network [SDN]. 1994–2006. ‘‘Java 2D API.’’
Available at http://java.sun.com/products/java-media/2D/
index.jsp

van Elzakker, C.P.J.M. 1993. ‘‘The Use of Electronic Atlases.’’
In Proceedings of the Seminar on Electronic Atlases, ed.
I. Klinghammer, L. Zentai, and F. Ormeling. Budapest: Eötvös
Loránd University. 145–55.

Web3D Consortium. N.d. ‘‘VRML97 and Related
Specifications.’’ Available at http://www.web3d.org/x3d/
specifications/vrml/index.html

Wiederhold, G. 1992. ‘‘Mediators in the Architecture of
Future Information Systems.’’ IEEE Computer 25/3: 38–49.

World Wide Web Consortium [W3C]. 2006. ‘‘Scalable Vector
Graphics: XML Graphics for the Web.’’ Available at http://
www.w3.org/Graphics/SVG/

Bernhard Jenny et al.

256 cartographica (volume 41, issue 3)


